Правило ленца закон электромагнитной индукции конспект. Конспект урока по физике_закон электромагнитной индукции. Изучение нового материала

Сегодня мы раскроем такой феномен физики, как «закон электромагнитной индукции». Расскажем, почему Фарадей провел опыты, приведем формулу и объясним важность явления для повседневной жизни.

Древние боги и физика

Древние люди поклонялись неведомому. И сейчас человека страшит пучина моря и даль космоса. Но наука может объяснить, почему. Субмарины снимают невероятную жизнь океанов на глубине свыше километра, космические телескопы изучают объекты, которые существовали всего лишь через считанные миллионы лет после большого взрыва.

Но тогда люди обожествляли все, что их завораживало и тревожило:

  • восход солнца;
  • пробуждение растений весной;
  • дождь;
  • рождение и смерть.

В каждом предмете и явлении жили неведомые силы, которые управляли миром. До сих пор дети склонны очеловечивать мебель и игрушки. Оставаясь без присмотра взрослых, они фантазируют: одеяло обнимет, табуретка подойдет, окно откроется само по себе.

Пожалуй, первым эволюционным шагом человечества стало умение поддерживать огонь. Антропологи предполагают, что самые ранние костры зажглись от дерева, в которое ударила молния.

Таким образом, электричество сыграло в жизни человечества огромную роль. Первая молния дала толчок к развитию культуры, основной закон электромагнитной индукции привел человечество к современному состоянию.

От уксуса до ядерного реактора

В пирамиде Хеопса были найдены странные керамические сосуды: горлышко запечатано воском, в глубине скрыт металлический цилиндр. На внутренней стороне стенок обнаружили остатки уксуса или кислого вина. Ученые пришли к сенсационному выводу: этот артефакт - батарейка, источник электричества.

Но до 1600 года изучать этот феномен никто не брался. До движущихся электронов исследовали природу статического электричества. О том, что янтарь дает разряды, если его потереть о мех, знали еще древние греки. Цвет этого камня напоминал им свет звезды Электры из Плеяд. А название минерала стало, в свою очередь, поводом окрестить физическое явление.

Первый примитивный источник постоянного тока был построен в 1800 году

Естественно, как только появился достаточно мощный конденсатор, ученые принялись изучать свойства подключенного к нему проводника. В 1820 году датский ученый Ханс Кристиан Эрстед обнаружил, что магнитная стрелка отклоняется рядом с включенным в сеть проводником. Данный факт дал толчок к открытию закона электромагнитной индукции Фарадеем (формула будет приведена чуть ниже), который позволил человечеству добывать электричество из воды, ветра и ядерного топлива.

Примитивное, но современное

Физическая основа опытов Макса Фарадея была заложена Эрстедом. Если включенный проводник влияет на магнит, то верно и обратное: намагниченный проводник должен вызывать ток.

Структура опыта, который помог вывести закон электромагнитной индукции (ЭДС как понятие мы рассмотрим чуть позже), была весьма проста. Смотанную в пружину проволоку подключили к прибору, который регистрирует ток. К виткам ученый поднес большой магнит. Пока магнит двигался рядом с контуром, прибор регистрировал поток электронов.

С тех пор техника усовершенствовалась, но основной принцип создания электричества на огромных станциях пока что тот же: движущийся магнит возбуждает ток в смотанном пружиной проводнике.

Развитие идеи

Самый первый опыт убедил Фарадея, что электрическое и магнитное поля взаимосвязаны. Но требовалось выяснить, как именно. Возникает ли вокруг проводника с током еще и магнитное поле или они просто способны влиять друг на друга? Поэтому ученый пошел дальше. Он смотал одну проволоку, подвел к ней ток, и эту катушку вдвинул в другую пружину. И тоже получил электричество. Этот опыт доказал, что движущиеся электроны создают не только электрическое, но и магнитное поле. Позже ученые выяснили, как они располагаются в пространстве относительно друг друга. Электромагнитное поле - это и та причина, по которой существует свет.

Экспериментируя с разными вариантами взаимодействия проводников под напряжением, Фарадей выяснил: ток передается лучше всего, если и первую, и вторую катушки намотать на один общий металлический сердечник. Формула, выражающая закон электромагнитной индукции, была выведена именно на этом приборе.

Формула и ее составляющие

Теперь, когда история изучения электричества доведена до эксперимента Фарадея, пора написать формулу:

Расшифруем:

ε - это электродвижущая сила (сокращенно ЭДС). В зависимости от величины ε электроны перемещаются в проводнике интенсивнее или слабее. На ЭДС влияет мощность источника, а на нее - напряженность электромагнитного поля.

Φ - величина магнитного потока, который проходит в данный момент через заданную площадь. Фарадей сворачивал проволоку в пружину, так как ему требовалась определенное пространство, сквозь которое проходил бы проводник. Конечно, можно было бы изготовить очень толстый проводник, но это было бы дорого. Форму круга ученый выбрал потому, что у этой плоской фигуры соотношение площади к длине поверхности наибольшее. Это самая энергетически эффективная форма. Поэтому капли воды на плоской поверхности становятся круглыми. К тому же пружину с круглым сечением гораздо проще получить: достаточно лишь намотать проволоку на какой-то круглый предмет.

t - время, за которое поток прошел сквозь контур.

Приставка d в формуле закона электромагнитной индукции означает, что величина дифференциальная. То есть маленький магнитный поток надо продифференцировать по небольшим отрезкам времени, чтобы получить конечный результат. Это математическое действие требует от людей некоторой подготовленности. Чтобы лучше понять формулу, мы настоятельно рекомендуем читателю вспомнить дифференцирование и интегрирование.

Следствия из закона

Сразу после открытия стали исследовать явление электромагнитной индукции. Закон Ленца, например, был выведен экспериментально российским ученым. Именно это правило добавило минус в конечную формулу.

Вид у него такой: направление индукционного тока не случайно; поток электронов во второй обмотке как бы стремится уменьшить действие тока в первой обмотке. То есть возникновение электромагнитной индукции - это фактически сопротивление второй пружины вмешательству в «личную жизнь».

Правило Ленца имеет и другое следствие.

  • если ток в первой катушке будет возрастать, то ток второй пружины тоже будет стремиться к увеличению;
  • если ток в индуцирующей обмотке будет падать, то уменьшится и ток во второй.

Согласно этому правилу, проводник, в котором возникает индуцированный ток, фактически стремится скомпенсировать действие изменяющегося магнитного потока.

Зерно и осел

Использовать простейшие механизмы себе на благо люди стремились давно. Помол муки - дело сложное. Некоторые племена растирают зерно вручную: кладут пшеницу на один камень, накрывают другим плоским и круглым камнем, и вертят жернов. Но если надо смолоть муку на целую деревню, то одним мускульным трудом не обойтись. Сначала люди догадались привязать к жернову тягловое животное. Ослик тянул за веревку - камень вращался. Потом, вероятно, люди подумали: «Река течет все время, она толкает всякие предметы вниз по течению. Почему бы нам не использовать это на благо?» Так появились водяные мельницы.

Колесо, вода, ветер

Конечно, первые инженеры, которые строили эти сооружения, ничего не знали ни о силе тяготения, из-за которой вода стремится всегда вниз, ни о силе трения или поверхностного натяжения. Но они видели: если поставить в ручей или речку колесо с лопастями на диаметре, то оно не только будет вращаться, но и сможет делать полезную работу.

Но и этот механизм был ограничен: не везде есть проточная вода с достаточно силой течения. Поэтому люди пошли дальше. Они построили мельницы, которые работали от ветра.

Уголь, мазут, бензин

Когда ученые поняли принцип возбуждения электричества, была поставлена техническая задача: получать его в промышленных масштабах. На тот момент (середина девятнадцатого века) мир был охвачен лихорадкой машин. Всю сложную работу стремились поручить расширяющемуся пару.

Но тогда нагреть большие объемы воды умели только ископаемым топливом - углем и мазутом. Поэтому те которые были богаты древними углеродами, сразу привлекли внимание инвесторов и рабочих. А перераспределение людей привело к промышленной революции.

Голландия и Техас

Однако такое положение вещей плохо отразилось на экологии. И ученые задумались: как получать энергию, не разрушая природу? Выручило хорошо забытое старое. Мельница использовала крутящий момент для совершения непосредственно грубой механической работы. Турбины гидроэлектростанций вращают магниты.

На данный момент самое чистое электричество получают из энергии ветра. Инженеры, которые строили первые генераторы Техаса, опирались на опыт ветряных мельниц Голландии.

Разделы: Физика

Цели урока:

  • обучающие: изучить явление электромагнитной индукции и условия его возникновения; показать причинно-следственные связи при наблюдении явления электромагнитной индукции; раскрыть сущность явления при постановке опытов, изучить правило Ленца (правила для определения направления индукционного тока), разъяснить закон электромагнитной индукции.
  • развивающие: развивать логическое мышление и внимание, умение анализировать, сопоставлять полученные результаты, делать соответствующие выводы, представлять результаты проделанной работы, развивать общую культуру речи, навыки групповой работы.
  • воспитательные: вызвать заинтересованность к изучаемой теме с точки зрения получаемой профессии, способствовать самостоятельному получению знаний.

Тип урока: изучение нового материала

Методы обучения: Метод проблемного изложения, частично-поисковый.

Формы организации познавательной деятельности:

  • Групповая
  • Фронтальная

Оборудование: электронная доска, презентация, мультимедийный курс Физика: полный курс.7-11 классы (под ред. В. Акопяна), полосовой магнит, соединительные провода, гальванометр, миллиамперметр, катушки, источник тока, ключ, проволочные мотки, магнит дугообразный, прибор для демонстрации правила Ленца.

План урока

Этапы урока Время, мин Приемы и методы
Создание проблемной ситуации, исторические сведения 8 мин Создание проблемной ситуации преподавателем. Демонстрации, подводящие к цели урока.
Изучение нового материала в ходе экспериментальной работы в группах (явление ЭМИ, правило Ленца) 2 мин Эксперимент.

Наблюдение.

Выделение главного. Формулировка выводов.

Изучение нового материала (правила определения направления индукционного тока, закон электромагнитной индукции). 20 мин Беседа.

Ответы на вопросы.

Подведение итогов. Домашнее задание. 5 мин Выделение главного. Оценивание

(взаимооценивание)

“Цепочка”.

Ход урока

1. Создание проблемной ситуации (дальняя перспектива)

Здравствуйте, ребята! На слайде (Слайд 1) презентации изображены опоры ЛЭП в разных странах: в Финляндии, например в виде оленей. Но опоры не меняют содержание: все ЛЭП предназначены для передачи электрического тока на большие расстояния, и все ЛЭПы – высоковольтные.

Почему все линии электропередачи высоковольтные?

(Ответы обучающихся, как правило - “Течет ток высокого напряжения” ).

Зачем повышают напряжение? (Слайд 2). Посмотрите на схему передачи электроэнергии: трансформатор повышает и без того высокое напряжение, а в быту, в осветительной сети необходимо всего 220В! Так зачем повышают напряжение? (Ответы обучающихся)

Пока мы вели с вами беседу через проволочный моток протекал электрический ток.

Демонстрация 1: Проволочный моток закреплен в лапке штатива, по нему пропускают электрический ток.

(Ответы обучающихся, как правило - “Проводник, по которому течет ток нагревается. Это тепловое действие тока” ).

Молодцы, верно! Ток, текущий по ЛЭП, нагревает линию (провод) происходит потеря энергии: часть электрической энергии превращается в тепловую. Потери тепловой энергии необходимо минимизировать. (Слайд 3) Давайте вспомним закон Джоуля-Ленца: уменьшить тепловые потери можно уменьшив, например, силу тока. Прибор, который уменьшает силу тока и одновременно с этим повышает напряжение во столько же раз (и наоборот), практически без потери мощности был изобретен в 1878 году русским ученым П.Н. Яблочковым и был назван трансформатором.

Давайте подведем небольшой итог: чтобы уменьшить тепловые потери при передаче электроэнергии на большие расстояния необходимо понизить силу тока, а эту роль выполнит повышающий трансформатор, но одновременно с этим он во столько же раз повысит напряжение. Вот почему все линии электропередач высоковольтные.

2. Создание проблемной ситуации (ближняя перспектива)

Но на каком принципе построена работа трансформатора?

(Обучающиеся затрудняются с ответом)

Его работа основана на явлении электромагнитной индукции, которое было открыто Майклом Фарадеем в 1831 году и является величайшим открытием ХIХ века. (Слайд 4)

На этом явлении построен принцип работы индукционных печей (ОМД, сталеплавильное производство) и лагов, индукционных варочных панелей (Технолог), металлодетекторов, трансформаторов(Сварщик) и генераторов переменного тока(Техническое обслуживание электрического и электромеханического оборудования). Ваша будущая профессия (специальность) неразрывно связана с этим явлением: без электрического тока вырабатываемого генераторами на ЭС невозможна работа станков (Станочник), электромагнитов (Машинист крана), электрических печей и плит (Технолог) и т.д.

Демонстрация 2. Моток закреплен в лапке штатива, по нему пропускают электрический ток, подносят магнит.

Какое действие электрического тока можно заметить?

(Ответы обучающихся, как правило - “Магнитное. Если по проводнику течет ток, то вокруг проводника возникает магнитное поле” ). Молодцы!

Верно. Если электрический ток порождает собой магнитное поле, то не может ли в свою очередь, магнитное поле породить электрический ток?

В 1821 году этим вопросом был озадачен Майкл Фарадей. “Превратить магнетизм в электричество” было написано у него в дневнике. Через 10 лет, 29 августа 1831 года эта задача была решена.

Запишите тему урока. ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ. ПРАВИЛО ЛЕНЦА. ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ.

Давайте экспериментально установим, при каких условиях магнитное поле может породить электрический ток в проводнике (контуре).

(Обучающиеся выполняют экспериментальные задания по группам).

  • 1 группа: Приложение 1
  • 2 группа: Приложение 2
  • 3 группа: Приложение 3

Подведем итоги работы наших групп:

1 группа (Ответы обучающихся). (Слайд 5) (ответы обучающихся 1 группы дополняются ответами обучающихся из других групп)

Вывод: В проводящем замкнутом контуре возникает электрический ток , если контур находится в переменном магнитном поле или движется в постоянном во времени поле так, что число линий магнитной индукции, пронизывающих контур, меняется.

Из истории вопроса: Почти одновременно с Фарадеем получить электрический ток в катушке с помощью магнита пытался швейцарский физик Колладон. При работе он пользовался гальванометром, легкая магнитная стрелка которого помещалась внутри катушки прибора. Чтобы магнит не оказывал непосредственного влияния на стрелку, концы катушки, куда вводили магнит, были выведены в соседнюю комнату и там присоединены к гальванометру. Вставив магнит в катушку, Колладон шел в соседнюю комнату и с огорчением убеждался, что гальванометр не показывал тока. Стоило бы ему все время находится рядом с гальванометром, а кого-нибудь попросить заняться магнитом, замечательное открытие было бы сделано. Но этого не случилось. Покоящийся относительно катушки магнит не вызывает в ней тока.

Введем понятие магнитного потока. (Слайд 6)

Магнитный поток - физическая величина, равная произведению модуля вектора магнитной индукции B на площадь S косинус угла? между векторами и

1 Вб = 1 Тл*1м 2

Магнитный поток в 1 Вебер создается магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции.

Ток, возникающий в замкнутом контуре при изменении магнитного потока, пронизывающего контур, называют индукционным током.

2 группа (Ответы обучающихся).

Вывод: Величина индукционного тока зависит (Слайд 7)

  • сила индукционного тока зависит не от скорости изменения магнитной индукции, а от скорости изменения потока магнитной индукции (от скорости изменения магнитного потока)
  • от числа витков в контуре

Общий вывод работы 1 и 2 группы:

Явление возникновения индукционного тока в замкнутом контуре при изменении магнитного потока, пронизывающего контур, называют явлением электромагнитной индукции.

3 группа (Ответы обучающихся). (Слайд 8). Правило Ленца.

Исследуя явление электромагнитной индукции, Э. X. Ленц в 1833 г. установил общее правило для определения направления индукционного тока:

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым был вызван.

Направление индукционного тока.

Правило правой руки

Если правую руку расположить так, чтобы вектор B входил в ладонь, а отогнутый на 90 о большой палец был направлен по движению проводника, то четыре пальца руки укажут направление индукционного тока проводнике.

При объяснении материала можно использовать мультимедийный курс Физика: полный курс.7-11 классы (под ред. В.Акопяна) (урок “Явление электромагнитной индукции”)

Закон электромагнитной индукции

Известно, что в цепи появляется электрический ток в том случае, когда на свободные заряды проводника действуют сторонние силы. Работу этих сторонних сил при перемещении единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой. Следовательно, при изменении магнитного потока, через поверхность, ограниченную контуром, в последнем появляются сторонние силы, действие которых характеризуется ЭДС, называемой ЭДС индукции.

~ и =, то = - для 1 витка = * N- для N витков

В соответствии с правилом Ленца:

= - *N - для N витков

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Ребята, сегодня мы познакомились с явлением электромагнитной индукции (ЭМИ). Работа многих приборов основана на этом явлении, особенную роль следует отвести генераторам переменного тока, в которых механическая энергия превращается в электрическую. Без электрического тока жизнь современного человека представить практически невозможно, так же как и Вашу будущую работу: индукционные варочные панели – Технолог, индукционные печи - ОМД, трансформатор – Сварщик и т.д.

Подведем итог урока, ответим на вопросы:

Вопросы:

1. В чем заключается явление электромагнитной индукции?

2. Что называют магнитным потоком?

3. Как связана работа станочника (машиниста крана, машиниста локомотива и т. д.) с явлением ЭМИ?

4. Почему закон электромагнитной индукции формулируется для ЭДС, а не для силы тока? Сформулируйте закон ЭМИ.

5. Почему в законе электромагнитной индукции стоит знак “минус”?

6. Как определить направление индукционного тока?

Сегодня мы плодотворно работали, проводили опыты, ребята оцените работу каждой группы: работу своей группы и работу студентов в других группах.

(Обсуждение, диалог обучающихся)

3. Домашнее задание:

8-11, конспект, стр. 27 (привести примеры возникновения индукционного тока, используя две катушки на общем сердечнике), подготовить сообщения (Металлодетекторы, поезд на магнитной подушке, индукционные печи, индукционные варочные панели).

Цепочка:

Как обычно, выходим из класса по “цепочке” (необходимо назвать физическую величину и единицы измерения физической величины).

Приложение 1

Приложение 2

Приложение 3

В 1831 году английский ученый физик в своих опытах М.Фарадей открыл явление электромагнитной индукции . Затем изучением этого явления занимались русские ученый Э.Х. Ленц и Б.С.Якоби.

В настоящее время, в основе многих устройств лежит явление электромагнитной индукции, например в двигателе или генераторе электрического тока тока, в трансформаторах, радиоприемниках, и многих других устройствах.

Электромагнитная индукция - это явление возникновения тока в замкнутом проводнике, при прохождении через него магнитного потока. То есть, благодаря этому явлению мы можем преобразовывать механическую энергию в электрическую - и это замечательно. Ведь до открытия этого явления люди не знали о методах получения электрического тока , кроме гальваники.

Когда проводник оказывается под действием магнитного поля, в нем возникает ЭДС, которую количественно можно выразить через закон электромагнитной индукции.

Закон электромагнитной индукции

Электродвижущая сила, индуцируемая в проводящем контуре, равна скорости изменения магнитного потока, сцепляющегося с этим контуром.

В катушке, которая имеет несколько витков, общая ЭДС зависит от количества витков n:

Но в общем случае, применяют формулу ЭДС с общим потокосцеплением:

ЭДС возбуждаемая в контуре, создает ток. Наиболее простым примером появления тока в проводнике является катушка, через которую проходит постоянный магнит . Направление индуцируемого тока можно определить с помощью правила Ленца .


Правило Ленца

Ток, индуцируемый при изменении магнитного поля проходящего через контур, своим магнитным полем препятствует этому изменению.

В том случае, когда мы вводим магнит в катушку, магнитный поток в контуре увеличивается, а значит магнитное поле, создаваемое индуцируемым током, по правилу Ленца, направлено против увеличения поля магнита. Чтобы определить направление тока, нужно посмотреть на магнит со стороны северного полюса. С этой позиции мы будем вкручивать буравчик по направлению магнитного поля тока, то есть навстречу северному полюсу. Ток будет двигаться по направлению вращения буравчика, то есть по часовой стрелке.

В том случае, когда мы выводим магнит из катушки, магнитный поток в контуре уменьшается, а значит магнитное поле, создаваемое индуцируемым током, направлено против уменьшения поля магнита. Чтобы определить направление тока, нужно выкручивать буравчик, направление вращения буравчика укажет направление тока в проводнике – против часовой стрелки.